Towards Disaster-Resilient Cities: Characterizing Vulnerability of Infrastructure Systems

University of British Columbia
Rajan Dhariwal

2008 SRA Meeting, Boston, Dec. 7~10
Overview

1. Introduction
2. Our Approach (hazard scenario and background info, expert interviews, workshop)
3. Data Synthesis: Service Disruption and Interdependencies
4. Workshop
5. Key Findings
6. Results and Conclusions
Introduction

- Goal: To develop an approach for communities to characterize their vulnerability to infrastructure failures in disasters
 - Demonstrated through case study of earthquake planning in Vancouver, B.C., Canada
Specific Approach

- Examine the potential for disruption to infrastructure services caused by vulnerabilities and interdependencies
 - Creation of a regionally specific scenario for a hypothetical hazard
 - Expert interviews
 - Data synthesized into diagrams
 - Diagrams facilitate discussion at workshop
Upstream/Downstream Dependencies

- **Upstream**
 - Electric Power
 - Land Transportation
 - Operate traffic lights, trolleys and SkyTrain
 - Replenish medical supplies and staff

- **Downstream**
 - Health
Infrastructures Interviewed

Utilities
- BC Hydro
- MetroVancouver (water & wastewater)
- Terasen Gas

Transportation
- Ministry of Transport
- Translink
- Airports (YVR and Abbotsford)
- Port of Vancouver

Telecom
- Telus

Health
- Fraser Valley Health Authority
- BC Children's & Women's Hospital

Government
- BC PEP
- Coquitlam (municipality)
- JELC
Interview Content

- Verification of scenario
- Upstream interdependencies
 - Which infrastructures?
 - Expectations regarding their disruption in scenario?
- Own system disruptions
 - Immediately, at 72 hours, at 2 weeks?
- Downstream interdependencies
 - Expected consequences?
 - Cross-sector planning?
- Mitigation priorities
 - Own sector?
 - Other sectors?
Service Disruption Scale

Service Disruption Level

- No Loss
- Slight Disruption
- Moderate Disruption
- Severe Disruption
Preliminary Estimates of Service Disruption Levels

<table>
<thead>
<tr>
<th>Sector</th>
<th>0 Hrs</th>
<th>72 Hrs</th>
<th>2 Wks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Communication</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transportation (Intraregional)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transportation (Interregional)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Healthcare</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Government</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Natural Gas</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wastewater</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Loss of Service

- No Loss
- Slight Disruption
- Moderate Disruption
- Severe Disruption
Greater Vancouver’s Infrastructure Interdependencies
Service Disruption (Immediate Aftermath)

Initial working diagram

Legend
- Severe service disruption
- Moderate service disruption
- Slight service disruption
- Indicates downstream dependency
- Downstream impact from severely impacted sector
- Downstream impact from moderately impacted sector
- Downstream impact from slightly impacted sector
- Significant dependency
- Moderate dependency
- Slight dependency
Workshop

• Review of data and key findings
 ▪ Using the scenario and diagrams

• Discussion
 ▪ Allowed participants to consider, revise, and augment the findings

• Workbooks
 ▪ Provided opportunity for diagram revisions
Revised Estimates of Service Disruption Levels

<table>
<thead>
<tr>
<th>Sector</th>
<th>0 Hrs</th>
<th>72 Hrs</th>
<th>2 Wks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Communication</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transportation (Intraregional)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transportation (Interregional)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Healthcare</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Government</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Natural Gas</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wastewater</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Loss of Service
- No Loss
- Slight Disruption
- Moderate Disruption
- Severe Disruption
Key Findings

• Variation amongst sectors for types of information sources, and for the amount of cross-sectoral discussions
 ▪ 31% drew information from both experience-based sources and regional cross-sectoral discussion

• Service level diagrams were changed, with sectors typically increasing the level of disruption
 ▪ Greater disruption, over longer time period

• Trend towards increase in service over time, with no sectors completely recovered (no service loss) after two weeks

• Interdependency diagrams reveal core/peripheral sector distinction
 ▪ Electric power is most connected, followed by land transportation and telecommunication
 ▪ Water?
Results

• Upstream service loss expected to increase in the days and weeks after disaster
 ▪ Backup resources depleted
• Each sector is highly interconnected with all of the others
 ▪ Directly upstream sectors dependent on other sectors
 ▪ High complexity
• Resolved discrepancies in expectations between sectors
 ▪ E.g., Transportation/Healthcare’s expectation on roads
• Developed or strengthened cross-sectoral contacts
• Increased practitioners’ understanding of infrastructure interdependencies and their potential outcomes in disasters